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Abstract

I argue that the best spacetime setting for Newtonian gravitation (NG) is
the curved spacetime setting associated with geometrized Newtonian gravi-
tation (GNG). Appreciation of the ‘Newtonian equivalence principle’ leads
us to conclude that the gravitational field in NG itself is a gauge quantity,
and that the freely falling frames are naturally identified with inertial frames.
In this context, the spacetime structure of NG is represented not by the flat
neo-Newtonian connection usually made explicit in formulations, but by the
sum of the flat connection and the gravitational field.

Introduction

There is a large literature concerning the best spacetime setting for Newtonian grav-
itation (NG). There is also a large (and sometimes overlapping) literature examin-
ing the benefits of a move to a Newtonian theory in which gravity is geometrized:
Newton-Cartan theory or geometrized Newtonian gravitation (GNG). However, the
degree to which geometrized Newtonian gravitation in fact provides the answer to
the first question has been underappreciated, in part because the full import of the
existence of a Newtonian equivalence principle hasn’t been acknowledged.1 I will
argue here that GNG is not merely an empirically equivalent, perhaps superior,
competitor theory to NG. It is, rather, a formulation that captures the best space-
time setting for Newtonian gravitation, judged by its own lights. In fact, the move

1Recent exceptions to this exist: Pooley ([forthcoming]) introduces Newton-Cartan theory in very
much the same way that I do here and is much more explicit than most that Neo-Newtonian spacetime
fails to capture the full symmetry of Newtonian gravitation; Weatherall ([unpublished]) articulates a
definition of theory equivalence on which NG and GNG can be identified; Saunders ([unpublished])
emphasizes a role for a Newtonian equivalence principle.
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to a curved spacetime setting for NG is motivated by much the same reasoning that
usually impels us to insist that Neo-Newtonian spacetime, and not Newton’s ab-
solute space, is the best setting for Newtonian gravity. Neo-Newtonian spacetime,
orthodoxy that it may be, actually represents an unstable stepping stone on the path
to the correct interpretation of Newtonian gravity.

Some key material I present here is not new; my argument here depends on the
symmetry of Newtonian mechanics under linear accelerations, given an appropriate
transformation of the gravitational field. This symmetry, articulated by Corollary
VI of the Principia, is hardly news, nor is the fact that it can drive us to adopt the
spacetime structure of geometrized Newtonian gravitation; Friedman, for example,
discusses this in his ([1983],pp.95-7).2 However, although the symmetry is known,
its consequences have not been fully incorporated into the spacetime discussion;
most classical spacetime discussions focus on neo-Newtonian/Galilean spacetime
as the right, or best setting for Newtonian theories.3 Once we acknowledge that the
symmetries of neo-Newtonian spacetime are really a special case of the complete
group of Newtonian symmetries, it seems that the best interpretation of Newtonian
gravitation is as a curved spacetime theory.

Needless to say, neo-Newtonian spacetime plays an important pedagogic and
clarificatory role. The conceptual journey from absolute space to curved space-
time structure is made much easier by a pausing at a formalism with a flat affine
connection. In some areas the debate is helpfully simplified by appeal to neo-
Newtonian structure. But if neo-Newtonian spacetime is merely a helpful idealiza-
tion or approximation to the real Newtonian spacetime structure, then this should
be acknowledged; stepping stones become less helpful when they are mistaken for
the riverbank.

It is worth a note on what this paper is not. It is not intended as a faithful histor-
ical exercise. There is, of course, no doubt that Newton didn’t intend a geometrized
reading of his gravitational theory, and I generally agree with John Earman when
he comments that:

It is no doubt fruitless but nonetheless tempting to speculate about
whether Newton, had he possessed the relevant mathematics, would
have dropped his insistence that the structure of spacetime is immutable
because it is the emanative effect of an immutable god in favour of the

2Penrose [1968] and Geroch [1978] both argue for the naturalness of the geometrized formula-
tion. See also (Pooley [forthcoming]) for a contemporary discussion.

3Of course, in explicit discussions of the symmetries of Newtonian theories, authors are often
very careful in their claims. The wide-spread belief that neo-Newtonian spacetime is the natural
Newtonian setting is most easily seen in literature that is slightly tangential. Consider, for example,
discussions of presentism in Newtonian and special relativistic settings: (Balashov [2000, 2008];
Savitt [2006]).
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idea that the affine structure of spacetime, though not immutable, is
determined by laws that are immutable because they are instituted by
an immutable god. ( Earman [1989], p.35)

That is not to say that there is not much to be gained from historical thought about
the issues at hand. Recent work by Simon Saunders ([unpublished]) brings to
the fore aspects of the Principia that are essential to my arguments here.4 John
Stachel’s excellent Newstein fable ([2007]) reminds us that the fact that geometrized
gravity was first developed in a relativistic context depended on historical contin-
gencies in mathematics; the notion of an affine connection was developed ‘postma-
turely’. However, my project is intended in the same spirit in which neo-Newtonian
spacetime is usually proposed. The exercise here is to choose the spacetime set-
ting that best matches the symmetries of Newtonian dynamics, regardless of the
spacetime structure proposed by Newton.

Here it is again worth commenting on how not to conceive of such a project.
Philosophers of physics are sometimes tempted to view this kind of interpretational
work as something like an exploration of the spatiotemporal metaphysics of a non-
actual but possible world in which Newtonian mechanics and gravitation are true.
This is a deeply unhelpful way of thinking about the issue! After all, it seems
highly unlikely that there is a possible world in which Newtonian theory is true,
in as much as Newtonian theory can’t account for the existence of stable matter.
At the very least, any possible world described by Newtonian mechanics doesn’t
possess the kind of objects whose behavior the theory is meant to capture. We
should instead think of the project as one that explores and establishes guidelines
for theory interpretation. The study of Newtonian mechanics has, after all, been
extremely instructive in understanding the interplay between the symmetries of the
dynamics of a theory, and the spacetime it proposes.

Determining the right spacetime setting for a theory is a subtle business. Per-
haps the most widely accepted methodological principle for choosing a spacetime
is that advocated by Earman ([1989], pp. 45-7): the symmetries of one’s spacetime
ought to exactly match any universal symmetries of one’s dynamics. As Earman
puts it, if the symmetries of the dynamics exceed those of the spacetime, we can
make do with less spacetime structure, and ought to by Occam’s razor.5 To a large
extent, I agree with this. However, once theories involving dynamical spacetime
structure are introduced, the standard prescription becomes less straightforward. In

4Saunders is also interested in establishing an interpretation of newtonian mechanics that faith-
fully reflects the wider symmetries of the theory, but his end point is Newton-Huygens spacetime, a
close relative of what Earman calls Maxwellian spacetime.

5There is of course a second strand to Earman’s principle: If the symmetries of the spacetime ex-
ceed those of the dynamics, then the dynamical laws cannot be universal, but we won’t here consider
theories whose spacetime symmetries outstrip those of the dynamics.
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the debate between Neo-Newtonian spacetime and the curved, dynamical space-
time of geometrized Newtonian gravitation, it is precisely the dynamics/spacetime
division that is at issue. I therefore take our guiding methodological principle to
be that one should, wherever possible, avoid postulating physical structure that is
underdetermined by the empirical content of the theory. Choosing the best space-
time setting for a theory therefore becomes a matter of avoiding undermotivated,
unphysical underdetermination (and of avoiding the indeterminism that so often
accompanies it). In the current context, my principle and Earman’s will come to
the same thing, and both speak in favour of a curved connection for Newtonian
gravitation.

I’ll begin in section one by reviewing what I take to be the orthodox interpre-
tation of Newtonian gravitation. I’ll review the standard moves that are made in
endorsing neo-Newtonian spacetime, and treating the gravitational potential as a
gauge quantity.

In section two, I’ll discuss the non-uniqueness of the gravity/inertia split in NG,
and argue that the gravitational field and the flat connection are gauge in much the
same way that section 1 took the gravitational potential and structure of absolute
space to be.

In section three, I’ll look at the role cosmology has played in the debate, and
ask whether the symmetries discussed in section 2 are only of concern in an infinite
homogeneous universe. I’ll argue that we can have reason to be concerned about
the gauge nature of the gravitation/inertia split even in a finite universe.

In section four I’ll argue that the existence of a Newtonian equivalence prin-
ciple makes it natural to identify the inertial frames of NG with the freely falling
frames. Moreover, Simon Saunders has demonstrated that these are the frames that
we (and Newton) are compelled to use in applications of Newtonian gravity in any
realistic cosmology. This makes a compelling case for claiming that NG is best
interpreted as a theory of curved spacetime.

I’ll finish, in section 5, with some brief thoughts on theory equivalence and its
relation to the issues discussed here.

1 Newtonian gravity: the orthodox approach

Suppose, with a bit of historical gerrymandering, that our starting point for New-
tonian gravitation is a gravitational potential formulation set in absolute space.6 If

6We could, of course, be slightly more historically faithful by starting with a force-formulation of
the theory, but considering the move from a force theory to a field theory would take too long here.
My formulation here is that of a mid-nineteenth century adherent of absolute space supplied with a
textbook in twentieth century differential geometry by a passing time-traveler.
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we then borrow contemporary geometrical tools in order to express such a formula-

tion, we take its face-value structure to be represented by the tuple 〈M, tab, h
ab,

NG

∇a
, ηa, ρ, φ〉. M here is a four dimensional manifold . This manifold comes equipped
with two (degenerate) metrics: tab is the temporal metric, and hab is the spatial
metric. The two metrics are orthogonal:

habtab = 0. (1)

NG

∇ a is a flat derivative operator on M , compatible with both metrics. ηa is a time-
like vector field that serves to identify spatial points at different times, and thus
gives the ‘rigging’ that represents the structure of absolute space. It satisfies

NG

∇aηb = 0. (2)

ρ is the scalar mass density7 and φ is the gravitational potential, which satisfies
Poisson’s equation:8

hab
NG

∇ a

NG

∇ bφ = 4πρ. (3)

Needless to say, such a formulation isn’t one you’ll find in a contemporary text-
book; indeed, I make no claim that anyone has ever defended exactly this formu-
lation. A more orthodox presentation of Newtonian gravity eliminates some of the
structure of the above. We’ll call such a presentation the ‘neo-Newtonian’ version
of the theory. First, it removes ηa, the ‘absolute space field’, and second, it re-

places the gravitational potential by the gravitational field −
NG

∇a φ. Thus a more
standard presentation of Newtonian gravity takes it to be well-expressed by the tu-

ple 〈M, tab, h
ab,

NG

∇a, ρ,−
NG

∇a φ〉. This section will look briefly at the two moves
required to arrive at this orthodox formulation.

The first of these is takes us from absolute space to neo-Newtonian spacetime.
The neo-Newtonian formulation specifies only enough spacetime structure to es-
tablish absolute accelerations, and not enough to establish absolute velocities. We
make this move because Newtonian gravitation obeys the Principle of Relativity:

7If I wished to be slightly more sophisticated, I might point out that the fundamental object here
is really some mass-momentum field T ab that determines ρ via ρ = T abtab. For a more thorough
exposition of the technical aspects of Newtonian theories, see e.g.(Malament [2012]).

8Henceforth I’ll usually omit the explicit spatial metric in favour of raised indices. The reader
more familiar with general relativity may wish to note that raising indices with hab is not quite like
raising indices with a full spacetime metric because there is no covariant tensor hab. Raising indices
with hab is best seen as a prescription for creating tensors whose contravariant indices are purely
spatial.
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nothing in the internal dynamics of a system distinguishes it from one boosted rel-
ative to it. This is, of course, expressed in the Principia as Corollary V of the laws
of motion:

COROLLARY V The motions of bodies included in a given space are
the same among themselves, whether that space is at rest, or moves
uniformly forwards in a right line without any circular motion.

As a result, Newton’s absolute space fails to respect the symmetries of the dynam-
ics, and any piece of structure we introduce to represent it (e.g. ηa) will be very

much a ‘gauge’ quantity. Instead, we introduce a flat connection,
NG

Γ , and asso-
ciated derivative operator. These are intended to capture the inertial structure of
neo-Newtonian spacetime; particles subject to no non-gravitational forces and (per
impossibile) isolated from gravitational sources follow geodesics of this connec-
tion. Furthermore, the connection naturally defines a class of reference frames,
related by Galilean transformations, in which the laws of physics take an invariant
form.

The second interpretational move involves the claim that it is the gravitational

field, −
NG

∇a φ, and not the gravitational potential, φ, that represents real physical
structure. This is as it should be: the equations of motion are entirely unaffected by

any transformation of φ that leaves−
NG

∇a φ unchanged (the trajectory of a massive

point particle moving in a gravitational field is given by ξa
NG

∇ a ξ
b = −∇bφ). The

gravitational potential is a gauge quantity, and we prefer to eliminate it from our
ontology in much the same way that we eliminate other gauge potentials like the
electromagnetic potential (modulo worries about the Aharonov-Bohm effect).

This quick summary is, I take it, uncontroversial. It’s a standard piece of rea-
soning that brings us to a form of Newtonian gravitation that more faithfully reflects
the symmetries of dynamics. What is more controversial is that the same kind of
reasoning, and the same drive to faithfully reflect the symmetries of the dynamics,
should lead us to interpret both the gravitational field and the connection as gauge
quantities. I’ll argue for this over the next two sections.

Before moving on, however, we might want to note even these comments raise
questions of theoretical identity: have we moved to a new theory by casting New-
ton’s original theory in this form? I take it that there is a commonly used sense
in which the move to a contemporary textbook form of the theory counts as re-
formulation of the theory that we started with.9 Needless to say, the strength of
the claim that this is a reformulation relies on the gauge considerations discussed
here: on the surface, a theory with an absolute space field has a different ontology

9See, for example, the discussion in (Jones [1991]).
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than one without. But although I’ll say more in section 5 about this issue, much
of what I wish to establish here can be achieved in the absence of a definition of
theory equivalence. Whatever you take the relation between our initial formulation
and NG as described above, there is a good case that the relation between NG and
GNG is of the same kind. That is, exactly the same kind of reasoning that brings
us to the above formulation will lead us to a theory with the spacetime structure
usually attributed to GNG.

2 Newtonian gravity: additional symmetries

Newtonian gravity set in neo-Newtonian spacetime is designed so as to reflect the
theory’s symmetries under transformations of inertial reference frame and the grav-
itational potential. However, it’s well known that the full symmetry group of New-
tonian gravitation is larger than that of Neo-Newtonian spacetime.10 For one thing
spatially uniform time-dependent accelerations are just as much symmetries of the
NG equations of motion as uniform boosts to velocity are; this is enshrined in the
Principia as Corollary VI of the Laws:

COROLLARY VI: If bodies moved in any manner among themselves,
are urged in the direction of parallel lines by equal accelerative forces,
they will all continue to move among themselves, after the same man-
ner as if they had not been urged by those forces.

Nothing in the dynamics uniquely picks out a class of inertial frames corre-
sponding to a flat connection. As long as we insist that the inertial structure is
flat, it is radically underdetermined. Moreover, the underdetermination of the flat

connection
NG

Γ looks very like the underdetermination of the timelike vector field
ηa that represented the ‘rigging’ of absolute space.

The freedom in the choice of a flat connection is accompanied by a corre-
sponding freedom in the definition of the gravitational field, precisely because
the equivalence of gravitational and inertial mass ensures that a gravitational field
can produce universal accelerations. Any transformation φ → φ + ψ, where
∇a∇bψ = 0 is a symmetry of the theory, providing that the derivative operator
is transformed via∇ → ∇′ where the Christoffel symbol associated with∇′ satis-
fies Γabc

′ = Γabc − tbc∇aψ. These transformations include trivial transformations

10(Synge [1937]) mentions these additional symmetries. Sklar further expands the informal argu-
ment in his ([1976]), and (Friedman [1983],pp.95-7) gives a more formal version. (Pooley [forthcom-
ing]) gives an overview that’s very much in line with my presentation here, and (Malament [2012])
gives a more technical presentation.
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of the gravitational gauge potential, but also transformations of the gravitational
field itself. Not only do the symmetries of the gravitational field and flat connec-
tion run parallel to the symmetries of section 1, but the symmetries of section one
turn out merely to be a special case of the wider symmetries of the theory.

Of course, it is not enough simply to note that our current formulation involves
objects subject to a gauge freedom; as Oliver Pooley notes in his ([forthcoming]),
we would also like to know what the gauge invariant objects of the theory are. The
above considerations reveal that while the gravitational field and inertial frames
are each subject to a gauge freedom, our choice of gauge for the two is not inde-
pendent. In order to pick out a new class of inertial frames we must choose a new
gravitational field. Thus the gauge invariant objects of the theory must be functions
of both the gravitational field and the connection; roughly speaking, what is invari-
ant under these gauge transformations is the sum of the gravitational and inertial

fields. One such gauge-invariant object,11 which will here be denoted by
NG

I ab c, is
given by:

NG

I ab c=
NG

Γ a
b c +

NG

∇
a

φtbc (4)

The next step in interpreting Newtonian gravitation is to ask what kind of beast

this new object is. The answer will hardly come as a surprise to the reader:
NG

I ab c is a
connection, and not just any connection; it is the curved connection of geometrized

Newtonian gravitation,
GNG

Γ a
b c.

Thus it turns out that the same kind of reasoning that lead us to Newtonian
gravitation set in neo-Newtonian spacetime also leads us to geometrized Newto-
nian gravitation. Once we have excised the gauge dependent objects, we are left

with a theory whose structure is represented by the tuple 〈M, tab, h
ab,

GNG

∇a ρ〉. M ,

tab, hab and ρ are defined as in NG above. However, the derivative operator
GNG

∇a
has curvature, Rabcd, which is subject to the following constraints:

Rab = 4πρtab (5)

R[a c]
[b d] = 0, (6)

Rabcd = 0 (7)

where (1) is the now-geometrized Poisson equation. Given these constraints, there
is a unique GNG derivative operator and associated connection for any given deriva-

11Note that this object is invariant under the discussed transformations of the covariant derivative
and gravitational field, but not under general coordinate transformations.
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tive operator/gravitational field pair in NG.12 From the perspective of GNG, equa-
tion (4) represents this relationship; rewriting it with the GNG connection replacing
our mystery invariant, we get the standard equation for the recovery of the GNG
connection from the neo-Newtonian connection and gravitational field:

GNG

Γ a
b c=

NG

Γ a
b c +

NG

∇
a

φtbc (8)

But it’s not clear here that the move to GNG should be thought of any differ-
ently from the move to what I called neo-Newtonian NG above; the motivation for
regarding the gravity/inertia split as a mere artefact of our representation seems
every bit as good as our arguments for regarding the gravitational potential, or ab-
solute space structure, as artefacts of a representation that should either be excised,
or, at the least, not taken seriously as physical objects. We pause at neo-Newtonian
spacetime only if we consider a subset of the fullest possible symmetry group of
the theory.

However, things are perhaps a little less straightforward than I have presented
them to be. While the arguments above are present in the literature, discussions
of the gauge status of the gravity/inertia split have historically brought in consid-
erations of cosmology, and it’s interesting to see how these might (and might not)
play a role here.

3 Cosmological Considerations

Concerns about Newtonian cosmology have their roots in an argument about the
potential inconsistency of Newtonian mechanics in the context of an infinite, ho-
mogeneous universe. John Norton ([1992]), among others, has argued that, in
such a universe, Newtonian mechanics fails to produce predictions for the force
on a given body. This is, of course, certainly correct, in as much as the gravita-
tional field, which defines the forces on bodies, is a gauge quantity. As Malament
([1995]) points out (and Norton ([1995]) endorses, at least to some extent), the ar-
gument seems to highlight not so much the inconsistency of a certain Newtonian
cosmology, but rather the undesirability of taking the gravity/inertia split seriously
given the symmetries of the theory.

However, by the lights of the current discussion, this dialectic is somewhat sur-
prising. From the literature alone, a reader might conclude that the alleged incon-
sistency does not arise if an island universe cosmology is postulated.13But nothing
in the discussion so far has mentioned cosmology at all. For my purposes here,

12That this is the case was first proved in (Trautman [1965]).
13This is not to suggest that all parties to the debate believe this. David Malament appears to

see the inconsistency as flagging a conclusive problem for an already troubled formulation, one
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it’s worth turning the argument around; Is it really the case that the gravity/inertia
split is only troubling in an infinite homogeneous universe? Do island universe
boundary conditions really solve the problem?

One reason why one might think that they do is that they appear to suggest
a natural fixing of the gauge. If we demand that the gravitational field tends to
zero as spatial distance from the center of the island universe tends to infinity,
then we naturally adopt a gauge in which the island universe is assumed not to
be accelerating. If we accept this, then it seems as if the only case in which the
gravity/inertia split is really underdetermined is the homogeneous and infinite one.
Our interpretation of NG then seems to rest on the degree to which we demand
that the theory be able to deal with any cosmological model, and perhaps even the
relative likelihood of island and homogeneous Newtonian cosmologies. How on
earth would we evaluate such a thing?

However, the island universe solution to the non-uniqueness of the gravity/inertia
split is not quite as secure as is sometimes supposed. After all, the mere availability
of some natural fix of gauge doesn’t imply that a gauge quantity should be included
in our ontology. The naturalness and usefulness of the Lorenz gauge in electromag-
netism, for example, does not automatically imply that there is a more fine-grained
ontology below the electromagnetic field.14 Moreover, an island universe seems to
give us far too much gauge fixing for free! The proponent of a standard of absolute
rest can easily argue that the apparent underdetermination of the time-like vector
field that establishes such a standard is broken by the existence of an island uni-
verse: in such a universe we can simply take the center of mass to be at rest, and
thus fix the velocities. Likewise, we can impose boundary conditions on the gravi-
tational potential that eliminate its gauge freedom. Neither of these arguments are
taken to be good arguments for abandoning neo-Newtonian spacetime and taking
the potential to be ontologically fundamental.

It’s therefore worth making explicit the reasons why we might treat the grav-
ity/inertia split differently. The argument for this rests on the fact that gravitational
fields require gravitational sources: in an island universe it is indeed very natural to
impose the boundary conditions that we do. However, if part of the question under
consideration is whether to take the gravitational field seriously, then this argument
is questionable. At best, the proponent of gauge fixing can insist that, from the per-
spective of their ontology, the gauge fixing is kosher; they can scarcely argue that
this fact necessitates the inclusion of the gravitational field in the ontology. But the

which demonstrates the advantage of adopting GNG for all applications of the theory, whatever the
cosmology.

14Note that fixing the Lorenz gauge doesn’t quite fix the potential, so this case would never be
an argument for taking the potential itself, rather than equivalence classes of potentials, physically
seriously.
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arguments run deeper that this: as we’ll see in the next section, there are pragmatic
considerations that may well pull us away from the notion of the inertial structure
associated with a flat connection, even in an island universe.

4 A Newtonian equivalence principle: inertial frames in
NG

The discussion so far leaves open two questions. First, suppose we grant that the
gravity/inertia split does not reflect physical structure, only its ‘sum’ does. Do we
then have reason to identify this ‘sum’ with a piece of spacetime structure? This
question seems particularly pressing when we stay within the formalism of NG,
and don’t explicitly introduce the invariant object of the theory as a connection
with curvature governed by the equations of GNG. However, assuming that not all
connections represent spacetime structure15 we can ask the same question within
the formalism of GNG: why think that this connection represents spacetime struc-
ture?

A second question was raised already: is there reason to worry about the grav-
ity/inertia split in an island universe? This section will answer both of these via
consideration of the nature of an inertial frame within NG. It will argue that the
freely falling frames are the most natural candidates for inertial reference frames
in NG, even in an island universe. In the Newtonian context, where no spacetime
metric exists, the sole role of spacetime structure (as opposed to spatial or temporal
structure) is to represent the structure of inertial frames. As a result, the connection
associated with the inertial frames is the one that represents spacetime structure.

Consider the following form of the equivalence principle (whose name is bor-
rowed from Stachel’s ([2007]) fable):

Newstein Equivalence Principle (NEP). No experiment can distinguish between
the effects of a homogeneous gravitational field, and the effects of uniform accel-
eration.16

As has been often commented, this principle is problematic in the context of
general relativity (GR), despite being essential to its development. In a properly
geometrized theory, there is no gravitational field proper, and certainly nothing
that rightly bears the title of ‘homogeneous gravitational field’. However, within
the context of NG, this principle is quite enlightening. It expresses exactly the
symmetry that leads us to regard the gravity/inertia split as unobservable, and hence

15They don’t! See (Brown [2005]) for arguments to this effect.
16The reader may notice that Newstein’s equivalence principle is indistinguishable from what is

sometimes called Einstein’s equivalence principle.
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gauge. Moreover, it’s not external to NG, but rather contained within the theory
in its earliest form; as Simon Saunders points out, the above principle follows
precisely from Corollary VI and the equivalence of gravitational and inertial mass
(so long as we assume that ‘the motions of bodies among themselves’ exhaust the
observable phenomena in a Newtonian context).17

However, once we’ve decided, on the basis of the above, to regard only the
gravity/inertia ‘sum’ of equation (4) as meaningful, another problem arises. The
NEP implies that a reference frame freely falling in a homogenous gravitational
field is indistinguishable from one moving inertially. The natural thing to do now
is to follow the reasoning that lead us to assert reference frames related by the
Galilean transformations in Newtonian gravity to be equivalent; Einstein’s elevator
and Galileo’s ship have a great deal in common. This would lead us to identify
freely falling frames with inertial frames. However, the gravitational fields as de-
fined in NG are not generally homogeneous; as a rule they produce tidal forces that
mean that, strictly speaking, real freely falling laboratories are not quite equivalent
to those moving inertially far from gravitational fields. In GR we get round this
problem by reformulating the equivalence principle to acknowledge that inertial
frames are a local matter, where local is a contextually sensitive term.18 We might
therefore wish to introduce the following:

The Newtonian Strong Equivalence Principle (NSEP). To any required degree
of approximation, given a sufficiently small spatial region, it is possible to find
a freely falling reference frame with respect to whose associated coordinates the
motions of bodies amongst themselves are indistinguishable from those expected in
the absence of external forces.

The NSEP is the principle that could identify locally freely falling frames with
inertial frames, and hence establish that the GNG connection is the correct space-
time connection. It is true in both NG and GNG. But here, again, island universe
worries might raise their head. In an island universe, gauge fixing for the grav-
ity/inertia split is possible, and it seems that we may have a competing candidate
for a class of inertial frames. In such a universe, are there still compelling reasons
to identify the freely falling frames with the inertial frames?

It will be helpful here to think more carefully about the operational status of
inertial frames in Newtonian gravitation. Saunders ([unpublished]) points out that
the neo-Newtonian inertial frames are empirically inaccessible in an island uni-
verse to a degree that is sometimes underappreciated. Simply assuming that the

17See (Saunders [unpublished, pp.14-5]) for more discussion of the equivalence principle in New-
tonian mechanics.

18For more details on how to think about this kind of contextual sensitivity in GR, see (Brown
[2005], p.170).
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center of mass of the universe moves inertially helps us very little with the prac-
tical application of the theory. Any system not located at the exact center of such
a universe will have an acceleration that depends on distance from the center; if
the universe is large, such distant-from-center accelerations will be very large in-
deed.19 As a result, one might think it a mystery that Newton could (and believed
he could) practically apply his theory. Saunders argues that there is good evidence
that Newton was aware of the problem, and went to some lengths to establish that
freely falling frames could be treated as inertial for all practical purposes. Roughly
speaking, this comes about because the freely falling frames provide convenient
non-rotating frames, and Corollary VI then guarantees that such accelerated non-
rotating frames may be treated as inertial.

Saunders’ aim with the above is to argue that any non-rotating frame will suf-
fice for Newtonian mechanics. Paying careful attention to Corollary VI, he argues
that the right spacetime setting for Newtonian mechanics is one without the means
to determine absolute linear accelerations. From our perspective here Corollary VI
is only one half of the symmetry enshrined in the equivalence principle; in order
to get at the full symmetry group of the theory, we must consider transformations
of the gravitational field as well. But although Saunders and I arrive at different
conclusions,20 parts of his account may also be bent to my purposes here, and used
to argue for a curved-spacetime interpretation of NG. For his argument reminds us
that, in the context of Newtonian astronomy, for example, the frames we actually
use are freely falling. The reference frame of the solar system is precisely the kind
of inertial frame picked out by the NSEP; the gravitational influences on the solar
system are sufficiently distant that tidal effects are not relevant at the scale of our
reference frame. But if these are the reference frames that we actually use, homo-
geneous infinite universe or no, then the case for adopting curved spacetime is very
compelling. To do otherwise at best (in the case of an island universe) commits
us to spacetime structure that is practically inaccessible and of no relevance to our
physics, and at worst (in the case of an infinite homogeneous universe) commits us
to spacetime structure that is inaccessible even in principle.

19See (Saunders [unpublished], p.10) for details.
20The difference in our accounts, as I see it, rests partly in my focus on the equivalence principle,

and partly in the fact that Saunders starts from a force, rather than field, formulation of Newtonian
gravitation. The relative merits of these approaches are interesting, but sadly beyond the scope of the
present article.
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5 Theory Equivalence?

I have tried so far to suppress the question of theory equivalence. However, the
reader will have noticed an occasional awkwardness in the language I’ve used; are
NG with a potential in absolute space, NG as a field theory in Newtonian spacetime,
and GNG different theories, or reformulations of the same theory? This question
might seem intimately connected to the issues at hand; certainly some discussions
of the above have come under the heading of theory equivalence. It’s therefore
worth a brief discussion of our best accounts of theory equivalence and their bear-
ing on this debate. At the same time, I’ll put the arguments here into the context of
discussions about the epistemology of geometry.

The most established and well worked-out account of theory equivalence is
Clark Glymour’s ([1970; 1977; 1980]). Glymour holds two theories to be equiva-
lent if they are both empirically equivalent and mutually inter-translatable. For a
first order theory Glymour cashes the notion of inter-translatability in terms of def-
initional equivalence, where two theories are definitionally equivalent just in case
there exists a first-order definitional extension of the one theory which is logically
equivalent to a definitional extension of the second. 21

As Glymour points out ([1977]), NG and GNG are not theoretically equivalent
on this definition (nor are our two forms of NG). Although the GNG connection is
uniquely determined by a given NG connection and gravitational field, the reverse
is not true; given some GNG connection, the gravity/inertia split is not unique.
And likewise, given some neo-Newtonian flat connection and gravitational field,
the absolute space field and gravitational potentials are not uniquely defined. As a
result, by Glymour’s lights, this paper has dealt with at least three different theories.

In a recent paper, James Weatherall ([unpublished]) suggests an alternative ac-
count of theoretical equivalence. Weatherall points out that Glymour’s definition
appears to give too fine-grained a notion of theory. In particular, it counts as dis-
tinct theories which differ only by the presence or absence of a gauge quantity;
Weatherall uses formulations of electro-magnetism with and without the vector
potential Aµ as an example. He argues (and I agree), that there is a natural sense
in which we do not pass to a new theory simply by reformulating in terms of the
electromagnetic field Fµν . However, Aµ is not uniquely determined by Fµν , so by
Glymour’s definition they are not inter-translatable.

Weatherall proposes an amendment to Glymour’s account. Roughly speak-
ing,22 he holds two theories to be equivalent just in case they are empirically equiv-

21I omit many details here because I’ll argue that nothing in my argument turns on the details
of our definition of theoretical equivalence. For a more thorough account, see Glymour’s work, or
(Weatherall [unpublished]) for a summary.

22Weatherall’s complete account involves some category-theoretic apparatus that won’t be devel-
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alent and for every model of the one theory there is a model of the other theory
whose “physical structure” is isomorphic. The physical structure of a given model
here depends on which models of a single theory we take to be equivalent; the
physical structure is just that structure that equivalent models have in common. So
if we consider two models related by a gauge transformation to represent the same
physical situation, then only the gauge invariant structure counts as physical struc-
ture. Weatherall’s account can thus allow for the equivalence of two formulations
that differ only by the presence or absence of a gauge quantity.

When Weatherall’s definition is combined with the arguments in this paper, NG
and GNG come out as theoretically equivalent; if both the flat NG connection and
the gravitational field are gauge quantities, then it is the gauge invariant ‘sum’ that
comprises the physical structure of NG. And that gauge invariant sum is, of course,
identical to some GNG connection for any model of NG.

Weatherall’s account fits well with the arguments of this paper. It also fits well
with the way in which gauge theories are discussed in both the physics and philos-
ophy literatures. As such, it is a helpful extension of Glymour’s original account.
But it doesn’t, of course, negate the need for the kinds of arguments presented here;
NG and GNG only come out as theoretically equivalent once we have established
the gauge nature of the NG field and connection. As Weatherall points out, differ-
ent interpretations of NG lead to different judgements of theoretical equivalence.

So Weatherall’s new definition is congenial to the aims of this paper but not,
I think, essential. It is very natural, given the arguments here, to think of NG and
GNG as reformulations of the same theory, and it is certainly useful to have our
theory/formulation language clarified. But if one wishes to adopt Glymour’s def-
inition, and insist that these are different theories that differ just by the presence
of gauge structure, the conclusions here are not much affected. My aims here are
twofold: first, to reiterate the oft-made point that the gravitational field and flat
connection of NG are best seen as gauge quantities and, second, to emphasize the
less common point that the relationship between NG and GNG is very much like
the one between NG with absolute space and a gravitational potential, and neo-
Newtonian NG. And of course, the similarity of the relationship carries through
on either definition of theory equivalence; on Glymour’s definition, the move to
neo-Newtonian NG involves a change of theory, as does the move to GNG. On
Weatherall’s definition combined with the arguments here, all three count as refor-
mulations of the same theory. But either way, there is nothing particularly ‘correct’
about the neo-Newtonian theory or formulation.

What of the epistemology of geometry? This topic has historically been as-
sociated with issues of theory equivalence (see, for example, (Glymour [1977])).

oped here.
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Glymour argued against widespread theoretical underdetermination, holding that
different theories could have different levels of empirical support despite both be-
ing empirically adequate. Applied to the geometrical case, this comes out as an
argument against Reichenbach’s geometrical conventionalism; according to Gly-
mour, the very fact that GNG has less surplus, or gauge, structure means that it
accrues more empirical support than NG. Although these two are different theories
by Glymour’s lights, they do not comprise a case of underdetermination. Weather-
all reaches different conclusions after classing NG and GNG as reformulations of a
single theory. He concludes that in the Newtonian context, the question of whether
spacetime is curved is not well-posed: because the metric structure of NG admits
of both curved and flat connections, spacetime curvature isn’t determinate in the
way it is in general relativity, and we’re free to describe the trajectories of bodies
in different ways.

In this area I am more inclined to agree with Glymour than Weatherall or Re-
ichenbach. On the view presented here, the gravitational field and flat connection

are pieces of surplus structure. However, a function of these,
NG

I ab c in equation (4)
is gauge invariant and should be counted as physical structure. And this invariant
quantity has all the properties of a curved connection, with all the right links to
the rest of physics (via the equivalence principle) to count as a piece of spacetime
geometry. As a result NG itself is best interpreted as a curved spacetime theory,
albeit written in a form that obscures its geometrical structure. NG and GNG thus
possess the same geometry, and are not an example of the underdetermination of
spacetime geometry.

6 Conclusions

The reasoning that leads us to regard the gravity/inertia split as not physically
meaningful in NG is much the same as the reasoning that leads us to believe that
absolute space is not physically meaningful. Moreover, the reasons we have for
thinking of the curved GNG connection as representing spacetime structure are of
much the same kind (although more persuasive) as those we have for thinking that
the flat neo-Newtonian connection represents spacetime; both claim to best capture
the inertial structure of the theory. Therefore, in as much as we see the arguments
for GNG as persuasive, we should see GNG as expressing the right spacetime
structure for NG, in much the same way that neo-Newtonian formulations of the
theory are usually supposed to. Neo-Newtonian spacetime is a stepping stone that
may, with the appropriate insight, be skipped over.
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